Difference between revisions of "Rosetta"
(Created page with "{{software info |description=protein structure prediction suite |license=site license |fields=Bioinformatics }} [http://www.rosettacommons.org/ {{PAGENAME}}] is a {{#show: {{PAGE...") |
(No difference)
|
Revision as of 08:49, 20 April 2012
Rosetta is a protein structure prediction suite that can also be used for structure design and to investigate protein-protein interactions.
Availability
Resource | Centre | Description |
---|---|---|
Abisko | HPC2N | capability resource of 153 TFLOPS with full bisectional infiniband interconnect |
Kappa | NSC | throughput cluster resource of 26 TFLOPS |
Matter | NSC | cluster resource of 37 TFLOPS dedicated to materials science |
Triolith | NSC | Capability cluster with 338 TFLOPS peak and 1:2 Infiniband fat-tree |
Compilation and installation
Rosetta 3.4 does not seem to compile with Intel 12 compilers, though it is possible to use Intel 11 compilers by explicitly setting the compiler path in rosetta_source/tools/build/user.settings and then building with the cxx=icc option to scons. Rosetta does not seem to support setting an install prefix at build time, but assumes that the source files will be copied to the install location and built in-place, but this isn't actually needed, as you can copy executables and libraries to any directory after the build completes. Note however that Rosetta rpaths its own shared libraries inside the build tree, so removing the build tree will break the program if you don't change the rpaths, using for example chrpath.
Rosetta also likes to name its executables after the operating system, compiler and mode of compilation, and also indicates "default" builds using name mangling (e.g: vip.default.linuxiccrelease). This is purely cosmetic and can be changed (e.g. to just vip). It is however worth bearing in mind that some third-party applications (like CS-Rosetta) will make assumptions on your build choices and only look for executables named *.linuxgccrelease (note not default), and their configurations will thus have to be modified accordingly.
Rosetta also needs a database directory tree, which you can point out using the $ROSETTA3_DB environment variable so that users do not have to use the -database option at each launch of a Rosetta executable.
License
License: Site license.
Experts
No experts have currently registered expertise on this specific subject. List of registered field experts:
Field | AE FTE | General activities | ||
---|---|---|---|---|
Anders Hast (UPPMAX) | UPPMAX | Visualisation, Digital Humanities | 30 | Software and usability for projects in digital humanities |
Anders Sjölander (UPPMAX) | UPPMAX | Bioinformatics | 100 | Bioinformatics support and training, job efficiency monitoring, project management |
Anders Sjöström (LUNARC) | LUNARC | GPU computing MATLAB General programming Technical acoustics | 50 | Helps users with MATLAB, General programming, Image processing, Usage of clusters |
Birgitte Brydsö (HPC2N) | HPC2N | Parallel programming HPC | Training, general support | |
Björn Claremar (UPPMAX) | UPPMAX | Meteorology, Geoscience | 100 | Support for geosciences, Matlab |
Björn Viklund (UPPMAX) | UPPMAX | Bioinformatics Containers | 100 | Bioinformatics, containers, software installs at UPPMAX |
Chandan Basu (NSC) | NSC | Computational science | 100 | EU projects IS-ENES and PRACE. Working on climate and weather codes |
Diana Iusan (UPPMAX) | UPPMAX | Computational materials science Performance tuning | 50 | Compilation, performance optimization, and best practice usage of electronic structure codes. |
Frank Bramkamp (NSC) | NSC | Computational fluid dynamics | 100 | Installation and support of computational fluid dynamics software. |
Hamish Struthers (NSC) | NSC | Climate research | 80 | Users support focused on weather and climate codes. |
Henric Zazzi (PDC) | PDC | Bioinformatics | 100 | Bioinformatics Application support |
Jens Larsson (NSC) | NSC | Swestore | ||
Jerry Eriksson (HPC2N) | HPC2N | Parallel programming HPC | HPC, Parallel programming | |
Joachim Hein (LUNARC) | LUNARC | Parallel programming Performance optimisation | 85 | HPC training Parallel programming support Performance optimisation |
Johan Hellsvik | PDC | Materialvetenskap | 30 | materials theory, modeling of organic magnetic materials, |
Johan Raber (NSC) | NSC | Computational chemistry | 50 | |
Jonas Lindemann (LUNARC) | LUNARC | Grid computing Desktop environments | 20 | Coordinating SNIC Emerging Technologies Developer of ARC Job Submission Tool Grid user documentation Leading the development of ARC Storage UI Lunarc Box Lunarc HPC Desktop |
Krishnaveni Chitrapu (NSC) | NSC | Software development | ||
Lars Eklund (UPPMAX) | UPPMAX | Chemistry Data management FAIR Sensitive data | 100 | Chemistry codes, databases at UPPMAX, sensitive data, PUBA agreements |
Lars Viklund (HPC2N) | HPC2N | General programming HPC | HPC, General programming, installation of software, support, containers | |
Lilit Axner (PDC) | PDC | Computational fluid dynamics | 50 | |
Marcus Lundberg (UPPMAX) | UPPMAX | Computational science Parallel programming Performance tuning Sensitive data | 100 | I help users with productivity, program performance, and parallelisation. I also work with allocations and with sensitive data questions |
Martin Dahlö (UPPMAX) | UPPMAX | Bioinformatics | 10 | Bioinformatic support |
Matias Piqueras (UPPMAX) | UPPMAX | Humanities, Social sciences | 70 | Support for humanities and social sciences, machine learning |
Mikael Djurfeldt (PDC) | PDC | Neuroinformatics | 100 | |
Mirko Myllykoski (HPC2N) | HPC2N | Parallel programming GPU computing | Parallel programming, HPC, GPU programming, advanced support | |
Pavlin Mitev (UPPMAX) | UPPMAX | Computational materials science | 100 | |
Pedro Ojeda-May (HPC2N) | HPC2N | Molecular dynamics Machine learning Quantum Chemistry | Training, HPC, Quantum Chemistry, Molecular dynamics, R, advanced support | |
Peter Kjellström (NSC) | NSC | Computational science | 100 | All types of HPC Support. |
Peter Münger (NSC) | NSC | Computational science | 60 | Installation and support of MATLAB, Comsol, and Julia. |
Rickard Armiento (NSC) | NSC | Computational materials science | 40 | Maintainer of the scientific software environment at NSC. |
Szilard Pall | PDC | Molecular dynamics | 55 | Algorithms & methods for accelerating molecular dynamics, Parallelization and acceleration of molecular dynamics on modern high performance computing architectures, High performance computing, manycore and heterogeneous architectures, GPU computing |
Thomas Svedberg (C3SE) | C3SE | Solid mechanics | ||
Torben Rasmussen (NSC) | NSC | Computational chemistry | 100 | Installation and support of computational chemistry software. |
Wei Zhang (NSC) | NSC | Computational science Parallel programming Performance optimisation | code optimization, parallelization. | |
Weine Olovsson (NSC) | NSC | Computational materials science | 90 | Application support, installation and help |
Åke Sandgren (HPC2N) | HPC2N | Computational science | 50 | SGUSI |